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AN EXACT ESTIBATE FOR THE COEFFICIENTS OF ATTACHED MASSES* 

S.B. VXGDERGAUZ 

&I inequality strengthening the well-known Polya-Schiffer result /l, 2/ 
is obtained for an arbitrary system of rigid bodies in translational motion 
through an infinite potential flow of a perfect incompressible fluid. 
Non-trivial examples of attaining equality in the estimate are given, 
establishing an analogy with the inverse problem of the theory of elasticity. 

Let US denote by S+ = USi,t = 1,2,.,.,m a three-dimensional region occupied by m perfectly 
rigid bodies with a Lyapunov boundary I'= Vri and total volume V>O. S- complements SC to 
a complete space and represents a connected region occupied by a fluid of unit density at rest 
at infinity, M is the symmetric tensor of the coefficients of attached masses corresponding 
to the translational motion of the system of bodies in the direction of the axesofacartesian 
ccordinate system XIX,Xs, E is a unit tensor, and ~~(~),I*(~),~~(~) are the invariants of an 
arbitrary symmetric tensor, i.e. they are the coefficients of the characteristic polynomial 

1, = dn + d,, 1. d,, 
(1) 

1, = WY dz.? t 4,“-- 4,4, - Wa, - d,,d,, (2) 
1% = d&&s i 2&W,, - We.2 - C4.2 - &i,,z (3) 

The indices 1, 2, 3 will denote indexation over the corresponding axes. 
The following theorem was formulated in /l, 2/: under the conditions given above, the 

mean attached mass of a body or of a system of arbitrary bodies is not less than the correspond- 
ing quantity for a sphere of the same volume 

orI in the equivalent form, 

(c(,~ are the components of M). 

I, (E I M) > "is (5) 

The proof of inequality (4) given in /2/ follows from the variational Dirichlet principle 

K, = sup K ('p) (6) 

~(~)=~~~~~I~~-~~ $$ -$d.qd&a 

r s+ 

where the kinetic energy K, is a quadratic form of the components of the velocity vector u= 
(UI, Ut, u,) 

K, = ‘/,I’ (Mu, u) (7) 

c fs,, =2* xa) is an arbitrary function in S- decreasing at infinity, and n[ are the components 
of the vector of the unit normal at any point of P directed into the region s+. In (6) 
and henceforth, the repeated indices denote summation. 

To obtain the estimate (4) we choose the function o of (6) in the form of a linear 
combination of the first derivatives with respect to the coordinates of the Newton potential 
of the masses of unit density distributed within the volume of the bodies 

1 Q 

‘p=” afl’ x= s 

dz,’ dzz’ dq’ 

~+ I& - +‘I* -I @a - s’)2 + &3 - f3r)‘p2 

Maximizing K(q) over a'(l= 1,2,3) we obtain the inequality 

where All are the diagonal elements of the tensor A with components 
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From the properties of X(r,,zp,.zQ) it follows that 

A,,+A,,+A,,= 1 (9) 

Relation (8) written in the coordinate system whose 
axes of A becomes an equality, especially in the case of 
in the proof the estimate (8) becomes coarser, remaining 
case of a sphere. 

To sharpen the estimate, we shall write (8), taking 

((M - S) u, u)> 0 

axes coincide with the principal 
any tri-axial ellipsoid. Further 
an equality at n= 1 only in the 

(7) into account, in the form 

(10) 

where B is a diagonal matrix with components b,, b,, b,, satisfying the relation 

b,b, + b,b, + b,b, - ?b,b,b, = i 

which follows from (8) and (9). 

(11) 

Since the vector u is arbitrary, we obtain from (10) the conditions of non-negativity 
of the quadratic form with the matrix (M-R) /3/ 

~11 > b,. 11%~ >, b,, KU > b, (12) 

the condition 

(~11 - b,) (~~22 - b2) - 1~12~ > 0 (13) 

and another two analogous conditions obtained from (13) by interchanging the indices, and 
finally 

det (M - 8)s u (14) 

From (13) and (12) it follows that 

CIllPZZ - P1*? > D,b, (15) 

- b,l*zz - b+,, > ~12 - V~I.QZ - b,bz (16) 

Combining inequality (15) with other analogous inequalities term by term we obtain, from 
(2), 

- I, (M) > b,b, - b,b, L b,h, (17) 

Writing now (14) in full and taking into account (3), we obtain 

I, (t+l, > b,b&, - b,b,p,, - b&+n - b,Q,, - b, (P,,cL~~ - jl?z"' - 
b, @n/.+3 - ~a') T b, (CIIIILZZ - CLIZ*) 

Using three inequalities of the form (16) and grouping the terms on the right-hand side 
of the resulting relation, we obtain 

?I, (M) > b, (k+zz - 11~~) + b, (P&U - 1113~) - b, (~n1.%2 - VIZ') - b,V', 

From (15) it now follows that 

Combining (17) and 
the coefficients piii 

It can be directly 
third-order matrix: 

218 (M! > 2blb,b, (18) 

(18) we obtain, taking into account (ll), the invariant estimate for 

21, (M) - 1, (M) > 1 (19) 

confirmed that the following identity holds for any non-degenerate 

3-:211(D) flz(D) 
IL((S iD)-') = 1 -I1(D)I I,(D) + I,(D) 

which can be used to reduce (19) to its equivalent form 

11 ((S f M)_l) < 2 (20) 

linear with respect to the elements (ET M)-1. It is evident that the inequalities (19), (20) 
hold for any triaxial ellipsoid. 

Having written the relation connecting the harmonic and arithmetic means /4/ of the 

components of the tensor (E-M) in its diagonal form 

we obtain, from (20), the Polya-Schiffer inequality. The converse is clearly false. 

For a two-dimensional tensor of the coefficients A the estimate of the type (20) has 

the form I, ((E + ,1)-l)< i or, which amounts fo the same thing, I* (.Y) ‘> 1. As was shown in /5/, 

the equality sign is obtained at the stationary point (for the small variations in the form 
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of the boundary) of the functional of attached mass in the z1 direction, provided that the 

total area of the system of bodies and their attached mass in the zp direction are given. 
The proof of condition (20) shows that the inequality becomes an equality on bodies of 

such form, that aylazlazj are constant in S+, or by virtue of the continuous character of 
X and its first derivatives, when the following relations hold on the boundary: 

q (9* +n* 28) = Jzl* + li; z = (Zlr 2,~ 21) E Ti 

acplan = z&n', a = (al, k=, na), f = t, 2, . . __ n; 

which are also generated by the inverse problem of the theory of elasticity dealing with the 
optimization of the state of stress of the homogeneous, isotropic, linearly elastic space s- 
with cavities loaded at infinity along the axes by the forces (II (I=l, 2.3). By the optimiza- 
tion we mean the control of the form of the boundary resulting in attainment of the least 
possible local Mises criterion, i.e. the maximum of the second invariant deviator of the stress 
tensor in s-. The functions ax/az have the meaning of elastic displacements of the points of 
the medium along the axes 2~) = (Q- 2qt)/qf, Q = ql+ qa+qa, and the constants CI remain undetermined. 
For such a boundary M and A are reduced simultaneously to diagonal form. 

Unlike the plane case /5/, the actual determination of the boundary at m>l is very 
complicated. In the axisymmetric variant Q = QI,~ n= p& we propose in /?/ a non-linear integral 
equation in coordinates of the points lying on the meridian section of the boundary, as func- 
tions of the arc lengths, and gives the results of its numerical solution. 
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ON CERTAIN FEATURES OF THE FLOWS OF 
VISCOUS COMPRESSIBLE FLUIDS IN CYLINDRICAL PIPES* 

V.N. BELONENKO and O.YU. DINARIEV 

The flow of a viscous compressible fluid in cylindrical pipes when there 
is volume viscosity /l/ is studied. The process is assumed to be baro- 
tropic, as is the case when, for example, heat emission can be neglected 
or when the fluid has high thermal conductivity. The problem of the 
correct boundary conditions for the system of defining equations is 
discussed. The problem of the flow of fluid with Tate's equation of state 
is solved using the method of separation of variables. Proofs of the 
existence and uniqueness of the solutions of the ordinary differential 
equations obtianed are given. The asymptotic behaviour of the velocity 
as the volume viscosity increased is studied. The coefficients of the 
volume and shear viscosity are assumed to be constant everywhere. 

1. We shall consider, side by side, the plane and the three-dimensional problem of a 
one-dimensional steady flow in a cylindrical region enclosed between fixed walls. The defin- 
ing system of equations (Navier-Stokes, continuity and state) is reduced to 

X = I-P i cu A = + qs (a2 + Aj) u 
:“: grad, [-p + &:I 

(1.1) 

(PU).* = 0, P = P w: 6 = 9v + '/a% 
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